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Abstract

When firms choose their capacity and then compete à la Bertrand, the mar-

ket equilibrium can correspond to the Cournot outcome (Kreps and Scheinkman,

1983). In the banking sector, a bank’s lending capacity is constrained by its

capital structure due to regulatory capital requirements. This paper estab-

lishes the conditions under which the Bertrand-Cournot equivalence extends to

banks. I treat capital as an imperfect capacity commitment, allowing banks to

distribute dividends and raise additional capital at a short-term premium dur-

ing the competition stage. I show under which conditions the Cournot outcome

is the unique equilibrium of the game. Such micro-foundations for Cournot

competition in the loan market open new perspectives to the modeling of an

elaborate, yet tractable, banking sector in macroeconomic models.
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1 Introduction

In recent years the macro-banking literature has received increased attention. An im-

portant challenge for researchers in this field is to model an elaborate banking sector in

order to capture the special role of banks in the economy while keeping the framework

tractable enough to be embedded in a macroeconomic model. Researchers wish to

incorporate key ingredients such as risk, limited liability, regulation, and asymmetric

information. When several of these features are present, perfect competition is useful

to maintain the model analytically tractable. However, the banking sector is very

concentrated and banks have substantial market power (Degryse and Ongena, 2008;

Freixas and Rochet, 2008). Consequently, assuming perfect competition may result

in outcomes or predictions that overlook important mechanisms driven by market

power.

Several papers incorporate micro-founded financial frictions in a macroeconomic con-

text, but often lenders do not have some key characteristics of banks such as the

deposit guarantee (Bernanke and Gertler, 1986, 1990; Brunnermeier and Sannikov,

2014). Another set of papers includes many of the relevant bank characteristics, but

run into tractability issues. Thakor (1996) and Begenau (2020) include capital re-

quirements, but bypass the challenges associated with limited liability by proxying

deposit insurance with a reduced-form subsidy from the government to banks. Chris-

tiano et al. (2010) embed a banking sector in a DSGE framework, where banks face

credit and liquidity risk but compete perfectly, whereas Abadi et al. (2023) account

for banks’ market power, but they need to rely on a reduced-form cost function for

banks, which is meant to capture agency costs and regulations. However, by relying

on reduced-form subsidies or costs, these models necessarily abstract from the un-

derlying mechanisms of deposit insurance and regulatory intervention, thereby losing
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important economic richness associated with limited liability, incentive distortions,

and the precise channels through which government guarantees affect banks behav-

ior. This paper offers a partial resolution to the broader challenge of modeling a

banking sector that is both rich and tractable. It does so by microfounding Cournot

competition in the loan market under clearly specified conditions, which in turn de-

lineate the approach’s limitations.

There are other approaches to imperfect competition that offer a degree of tractability.

In the literature, the most commonly used forms of competition are competition à la

Salop and à la Dixit-Stiglitz 1. In a Salop model, borrowers are uniformly distributed

on a circle and banks decide their location. Borrowers incur transportation costs

to reach a bank. This type of competition can be narrowly interpreted as purely

spatial, emphasizing that physical distance is an important factor in the lending

market (Nguyen, 2019; Degryse and Ongena, 2005; Petersen and Rajan, 2002) or, in

a broader sense, the unit circle can be seen as the space of products where banks

offer loans with different features to gain market power. The standard interpretation

of Dixit-Stiglitz also relies on product differentiation, but it implies that, ceteris

paribus, borrowers are better off by having multiple loans with different banks rather

than having one large loan with one bank. Ulate (2021) provides a plausible micro-

foundation: the CES demand can be generated by a two step decision process in

which first borrowers choose a bank through a taste shock and then decide on the

loan quantity. However, these models are microfounded only under the assumption

of horizontal differentiation (e.g. bank branding or location) where no product is

objectively better than another. Vertical differentiation (e.g. differences in contract

terms such as maturity, collateral, or monitoring) does not microfound the competitive

1For competition à la Salop, examples include but are not limited to: Dell’Ariccia (2001); Chiap-
pori et al. (1995); Andrés and Arce (2012); Andrés et al. (2013); for competition à la Dixit-Stiglitz:
Gerali et al. (2010); Ulate (2021); Wang et al. (2022); Abadi et al. (2023).
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structure in these models. Vertical quality differences affect borrower choice, but they

do not justify the taste-shock logic. For instance, if a bank offers better terms due to

superior screening or relationship lending, borrowers will strictly prefer it in financial

terms. This paper provides microfoundations for Cournot competition by modeling

agents as maximizing the risk-adjusted net present value of cashflows, offering an

appealing alternative to taste-shock approaches. These foundations highlight both

the advantages and the limitations of Cournot, which, while tractable, should be

adopted only when consistent with the environment under study.

Cournot competition also offers analytical advantages that are particularly useful

in dynamic macroeconomic models. Li (2024) points out that monopolistic com-

petition models à la Dixit–Stiglitz do not generate time-varying loan markups over

the business cycle without additional assumptions. In the DSGE literature, such

variation is typically introduced through mechanisms like exogenous shocks to the

elasticity of substitution (Gerali et al., 2010), changes in banks’ marginal cost of

lending (Hafstead and Smith, 2012), deep habits in financial intermediation (Airaudo

and Olivero, 2019; Aliaga-Dı́az and Olivero, 2010), or nominal rigidities à la Calvo

or Rotemberg (Hülsewig et al., 2009). By contrast, Li (2024) models the banking

sector as a Cournot oligopoly, where markups vary endogenously with the number of

banks and the elasticity of loan demand. The Cournot framework can capture how

imperfect competition endogenously shapes macroeconomic fluctuations, without the

need to introduce additional frictions.

The starting point of the micro-foundations of Cournot competition is Kreps and

Scheinkman (1983) (hereinafter KS) who show that in a two-stage game in which

firms first choose capacity and then compete à la Bertrand, the unique subgame

perfect equilibrium is the Cournot outcome. Given this setting, the banking sector

seems a natural application for two reasons: (1) given a fixed amount of regulatory

4



capital, capital requirements constrain a bank’s lending capacity, therefore, bank

capital choices can be interpreted as capacity choices (Schliephake and Kirstein, 2013);

(2) banks typically do not raise capital and issue loans simultaneously, but have

medium-term capital targets (Couaillier, 2021). However, ex-ante capital choices do

not always represent a rigid constraint. Maggi (1996) develops a model of capacity–

price competition in which firms can expand capacity, though the analysis is limited to

differentiated goods under linear demand. This perspective is particularly suited for

banks, since bank capital appears to be a less rigid constraint than physical capital.

Schliephake and Kirstein (2013) prove that Maggi’s framework can be extended to

banks that issue risk-free loans, and show that if the cost of raising capital in the

second stage is sufficiently high, the Cournot outcome is the unique subgame-perfect

equilibrium.

The contribution of this paper is to outline the conditions under which the Bertrand-

Cournot equivalence hold in a more general setup, given the following characteristics

of the banking sector. First, banks are protected by limited liability and deposits are

insured by the government. Second, banks are subject to capital requirements and can

increase or decrease their capital in the competition stage. Third, loans are not only

risky, but their risk is endogenous. In particular I allow the probability of default to

depend on the interest rate charged by the bank. This feature is important because

it allows for loan demand functions derived from bank–borrower interactions that

incorporate asymmetric information. The interest rate can affect the composition of

the pool of borrowers or borrowers’ incentives. Depending on the friction taken into

account, a higher loan rate can lead to a safer (De Meza and Webb, 1987; Bernanke

and Gertler, 1990) or a riskier portfolio (Stiglitz and Weiss, 1981; Martinez-Miera and

Repullo, 2010) or the effect may be ambiguous (House, 2006).

The impact of the loan rate on the probability of default requires particular at-
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tention, as it potentially threatens the Bertrand-Cournot equivalence. In KS, the

Bertrand–Cournot equivalence holds because, once firms are at full capacity, the

demand-stealing mechanism of Bertrand competition vanishes: price cuts reduce rev-

enues without expanding output. In stage 1, firms anticipate that they will operate

at full capacity and therefore, the strategic choice of capacity is equivalent to the

strategic choice of quantity. This equivalence cannot be straightforwardly applied to

environments characterized by asymmetric information: a bank, even when operating

at full capacity, may want to charge a lower rate in order to improve its distribution

of defaults. Whether the Bertrand–Cournot equivalence holds depends on the nature

and magnitude of the underlying friction. Three conditions are required. First, the

expected average residual cashflow—i.e. cashflows net of deposits—must be increas-

ing in the bank’s loan rate. This implies that in standard moral hazard setups (Boyd

and De Nicolò, 2005; Martinez-Miera and Repullo, 2010), borrowers’ incentives should

not be overly sensitive to small changes in the loan rate. Second, a bank’s default

rate must depend only on its own interest rate, not on that of its competitor. This

condition is unlikely to hold in setups in which banks screen borrowers. In this case,

if a bank names a rate lower than the one of the opponent’s, it attracts a better pool

of borrowers (Broecker, 1990; Marquez, 2002). Third, in line with Schliephake and

Kirstein (2013), I find that the cost of raising more capital in the short term must

be sufficiently high in order to sustain the Cournot equilibrium. The intuition is that

capacity constraints must be relevant, otherwise the competition stage becomes a

standard Bertrand game.

Cournot offers desirable properties of tractability and modeling flexibility. This pa-

per contributes by establishing its microfoundations and delineating its limitations,

thereby offering a tool that may open new perspectives in the macro-banking litera-

ture.
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2 Model Setup

2.1 The environment

The model builds on Kreps and Scheinkman (1983) (KS) and Martinez-Miera and

Repullo (2010). All agents are risk neutral and the gross risk-free rate is normalized

to one. Consider the following two-bank two-stage game. In stage 1, each bank

i ∈ {1, 2} raises equity capital ki ∈ R+, and in stage 2 banks compete à la Bertrand

in the loan market. Capital regulation requires banks to fund a fraction γ ∈ (0, 1)

of their loans, li ∈ R+ with capital. Loans can also be financed through deposits,

di , which are supplied elastically. In the second stage, banks are allowed to adjust

their capital: they can either reduce capital by distributing dividends at a unit cost

δ or raise more capital at a short-term premium κ. These costs can be broadly

interpreted as capital adjustments costs, which capture both purely transactional

costs and deadweight losses (e.g. limited investor base to raise more capital in the

short-term). Their role in the model is to prevent banks from frictionlessly adjusting

their capital, thereby making stage 1 irrelevant.

In contrast with Schliephake and Kirstein (2013), loans are risky. Let ri be the

interest rate charged by bank i. The fraction of loans that default is governed by

the random variable x, which is distributed according to the cumulative distribution

function F (x|ri) which has support [0, 1]. I assume that if a loan defaults its recovery

rate is zero. Over its support, F (x|ri) is twice continuously differentiable in x and ri,

and it is strictly increasing in x. How ri affects the distribution of defaults depends

fundamentally on the underlying friction present in the loan market. This flexibility

means that the model can accommodate a variety of asymmetric information setups

and other frictions, as long as the conditions outlined later in this section are satisfied.

In practice, the contribution of this paper should be interpreted as follows: select the
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friction of interest, use it to microfound the conditional default distribution F (x|ri),

and then verify that the necessary conditions for tractability are met. This approach

enables researchers to incorporate diverse frictions while retaining tractability.

In stage 2, banks take capital raised in stage 1 as given and every pair (k1, k2) represent

a different subgame which I denote by H(k1, k2). In every subgame, banks compete

à la Bertrand subject to capital requirements. Borrowers select banks according to a

Bertrand allocation rule. All borrowers first apply to the bank offering the lowest rate.

If the cheapest bank has not sufficient lending capacity to satisfy the entire demand

at ri < rj, it has two options: (i) expand its capital so as to increase lending capacity;

or (ii) refrain from expanding, in which case borrowers are rationed rationed. The

residual demand is then served by the rival bank at its quoted rate. Formally, denote

by L(r) the aggregate loan demand as a function of the loan rate and assume that it

is twice continuously differentiable and strictly decreasing where it is positive. In the

subgame H(k1, k2), given the loan rates posted r = (r1, r2) and the additional capital

raised e = (e1, e2) by each bank, the demand served by bank i is given by:

li(r, e) =


min

(
ki+ei
γ
, L(ri)

)
if ri < rj

min
(
ki+ei
γ
,max

(
L(ri)

2
, L(ri)− kj+ej

γ

))
if ri = rj

min
(
ki+ei
γ
,max

(
0, L(ri)− kj+ej

γ

))
if ri > rj

In every instance, a bank cannot extend loans beyond its capacity (ki + ei)/γ de-

termined by the capital requirement. If bank i sets the lowest rate, it serves the

entire market up to its capacity. If banks set the same rate, they equally split the

demand; however if one bank does not have sufficient capacity to serve half of the

market, the other can serve the residual demand. Lastly, if bank i names the highest

rate, it serves the residual demand (if any). Note that rationing follows the efficient
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rule: borrowers who are more willing to pay, are served first. Efficient rationing is

not an inconsequential assumption; the KS result does not hold under other types of

rationing without further assumptions 2. To ease readability let li(r, e) = li.

2.2 Funding structure

To streamline the analysis I derive a preliminary result on the funding structure of the

banks. If cashflows generated by the loans are not sufficient to pay back deposits the

bank defaults and deposit are repaid though the government insurance. Therefore,

from the bank’s perspective, deposits are the cheapest source of funding3. I assume

that the unit cost of paying dividends δ is sufficiently small to ensure that, for a given

level of lending, the bank always prefers to pay dividends and raise deposits when the

capital requirement constraint is slack 4. Given this, after stage 2 decisions have been

made, the capital requirement constraint binds. Consequently, deposits are always

equal to di = (1− γ)li. Given the loan rate posted and the additional capital raised

by each bank, the stage 2 payoff of bank i is given by:

(∫ x̃

0

((1− x) (1 + ri)− (1− γ)) dF (x|ri)
)
li + η(ki, li)

where x̃ =
ri + γ

1 + ri

2See Lepore (2009).
3Provided that the bank’s probability of default is strictly positive. If the bank’s probability of

default is zero, then the bank is indifferent between deposits and capital and the model reduces to
a KS game where production costs are equal to capacity costs.

4Given the evidence of bank payout behavior (Acharya et al., 2022; Belloni et al., 2024) this
assumption does not seem particularly restrictive. The assumption is important for tractability (for
further discussion see Section 5). For the exact condition see the Appendix.
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x̃ is the maximum fraction of defaults that allows the bank to repay deposits and

η(li, ki) is the capital adjustment function, which is given by:

η(li, ki) =


(1− δ)(ki − γli) if ki ≥ γli

−(1 + κ)(γli − ki) if ki < γli

If capital raised in stage 1 is greater than what the regulation requires, then the bank

pays back a dividend, whereas if the bank needs to raise more capital, it must pay

the short term premium5. Define

m(r) =

∫ x̃

0

((1− x) (1 + ri)− (1− γ)) dF (x|ri) (1)

as the expected average residual cashflow, i.e. the average cashflow left to shareholders

after deposits are repaid. Note that, thanks to the deposit guarantee, the bank pays

deposits at the risk-free rate only in the states of the world in which it survives.

2.3 Strategy Space, Payoffs and Equilibrium Concept

In stage 2, bank i will choose a distribution over rates Gi(ri) and how much extra

capital ei to raise in order to maximize its expected payoff:

max
Gi∈Sr, ei∈R+

{
M(Gi, Gj, ei, ej) =

∫ r̄j

rj

∫ r̄i

ri

[m(ri)li + η(ki, li)] dGi(ri)dGj(rj)

}

where ri and r̄i are respectively the infimum and the supremum of the support of Gi,

and Sr is the space of distributions over rates.

In stage 1, each bank chooses capital according to some distribution µi(k), with

5Note that by construction ki < γli only if ei > 0.
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support [ki, k̄i] ⊆ R+, anticipating the equilibrium strategies of each subgame. Denote

by Sk the strategy space of stage 1. Bank i aims to maximize its expected profits:

max
µi(ki)∈Sk

{
π(µi, µj) =

∫ k̄i

ki

∫ k̄j

kj

(M∗
i (ki, kj)− ki) dµj(kj)dµi(ki)

}

where µj is the opponent’s strategy and M∗(ki, kj) is the expected equilibrium payoff

of H(ki, kj).

Definition. The tuple (µ∗1, µ
∗
2, G

∗
1(r1|k1, k2), G∗2(r2|k1, k2), e∗1(k1, k2), e∗2(k1, k2)) is a sub-

game perfect Nash equilibrium (SPNE) if

• For all (k1, k2) ∈ R2
+, (G∗1(r1|k1, k2), G∗2(r2|k1, k2), e∗1(k1, k2), e∗2(k1, k2)) are the

equilibrium strategies of the subgame H(k1, k2), i.e. for all i = 1, 2

M(G∗i , G
∗
j , e
∗
i , e
∗
j) ≥M(Gi, G

∗
j , ei, e

∗
j) ∀(Gi, ei) ∈ Sr × R+

• For all i = 1, 2:

π(µ∗i , µ
∗
j) ≥ π(µi, µ

∗
j) ∀µi ∈ Sk

2.4 Key Conditions

I now set out the sufficient conditions which allow me to prove that the Cournot

outcome, defined in the next section, is the unique equilibrium of this game.

Condition 1. (Monotonicity) m(r) is strictly increasing in r where it is positive.

Condition 1 states that the average residual cashflow is increasing in own interest

rate. While for firms with linear costs it is trivial that an increase in price leads to
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an increase in the average margin, for banks there are other channels at work:

∂m(r)

∂r
=
∂x̃

∂r
(1 + r)F (x̃|r)︸ ︷︷ ︸

(+) Buffer

+

∫ x̃

0

F (x|r)︸ ︷︷ ︸
(+) Margin

+ (1 + r)
∂F

∂r︸ ︷︷ ︸
(±) Distribution shifting

dx R 0

In line with Schliephake (2016), there are three effects. First, the buffer effect: an

increase in r drives the increase in the threshold x̃ and allows the bank to survive

in more states of the world. Second, the margin effect: an increase in the rate

makes the bank earn more on non-defaulting loans. Lastly, an increase in r affects

the distribution of the default rate. The direction of this distribution shifting effect

is ambiguous and depends on the friction that F (·|r) is meant to capture. The

condition on monotonicity implies that if the distribution shifting effect is negative,

its magnitude cannot be too large. A negative distribution shifting effect implies that

when the bank charges a higher rate the portfolio becomes riskier, e.g. an entrepreneur

protected by limited liability chooses a riskier project when facing a higher loan rate

(Boyd and De Nicolò, 2005; Martinez-Miera and Repullo, 2010; Schliephake, 2016).

In this context, Condition 1 impose that a small change in the loan rate should not

lead to a dramatically different probability of default.

Condition 2. (Independence) The distribution function of default is independent

from the opponent’s rate F (x|ri, rj) = F (x|ri).

As I will discuss in detail in Section 4, this condition is generally not satisfied in

adverse selection settings, where relative prices affect the quality of the pool served.

2.5 The Cournot benchmark

Before proceeding to the characterization of the equilibrium, I define the one-stage

Cournot benchmark. In this one-stage game, banks choose capital and loan quanti-
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ties simultaneously, while facing the same fundamentals as in the two-stage game—

namely, the same regulation, the same demand, and the same risk environment. Cap-

ital requirements are binding because of the government guarantee, therefore ki = γli

and di = (1− γ)li for i ∈ {1, 2}. Denote the inverse loan demand by r(L) ≡ L−1(r),

which is the interest rate on loans as a function of total loans supplied L = l1 + l2.

Taking lj as given, bank i solves the following problem:

max
li≥0

(∫ x̃

0

((1− x) (1 + r(L))− (1− γ)) dF (x|r(L))− γ
)
li

Define Z(L) =
∫ x̃

0
((1− x) (1 + r(L))− (1− γ)) dF (x|r(L)) . Assume that−Z ′′(L)L/Z ′(L) <

1 which ensures that the Cournot equilibrium is unique. Cournot games that have

multiple Cournot equilibria fall outside the scope of this paper.

Lemma 1. Let

b(lj) = arg max
li≥0

(Z(L)− γ)li

The best response function b(·) has a unique fixed point b(lC) = lC. Therefore (lC , lC)

and r(2lC) are respectively the equilibrium quantities and the equilibrium rate of the

Cournot game.

Proof. See Appendix.

The independence condition implies that Z(L) = m(r(L)). In absence of this con-

dition, the equality may not hold. When certain frictions are introduced, it is not

possible to map the two-stage game to this one-stage setup. For example, if banks

can screen borrowers using an informative but imperfect signal, the relative pricing

between competitors becomes relevant: the bank offering the more attractive rate will

screen applicants before the other and therefore will face a better pool of borrowers.

The one-stage Cournot game, which implies a single prevailing market rate, is not
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able to capture this kind of sorting effect across lenders. The monotonicity condition

implies that Z ′(L) < 0 where it is positive.

Auxiliary Cournot game

Before turning to the two-stage game, I define an auxiliary Cournot game, whose

best response functions are useful to partition the space of the subgames into relevant

regions. This auxiliary game is a stage 2 Cournot game in which the bank has already

raised capital and faces the opportunity cost of paying dividends. Let:

b̂(lj) = arg max
li≥0

(Z(L)− γ(1− δ))li

It is straightforward to prove that b̂(·) has the same properties of b(·) and that b̂(lj) ≤

b(lj), with strict inequality when b(lj) is positive.

Now I proceed to the two stage game. In the next sections I show by backward

induction that the Cournot outcome is the unique subgame perfect Nash equilibrium.

3 The baseline model

For now, to streamline the core of the analysis, I assume κ = +∞ , therefore banks

will not be able to raise capital in the short term. This assumption is relaxed in

Section 5. I also assume δ > 0 to rule out multiplicity of equilibria. In Section 5 I

allow δ = 0 and provide an alternative set of assumptions to maintain uniqueness.

Following the solution concept defined in the previous section, I proceed by backward

induction.
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3.1 Second stage: Bertrand competition with capacity con-

straints

In this section, I characterize the equilibrium of every subgame H(k1, k2). Define

ργ(θ) to be the rate such that the expected average residual cashflow m(ργ(θ)) = γθ,

and Λγ(θ) = L(ργ(θ)) the corresponding loan demand.

First, it is straightforward to find the subgame equilibrium in subgames in which

(k1, k2) are so large, that banks always find it profitable to operate below capacity. In

a KS setting, this is equivalent to say that capacity are so large that if a firm wants to

operate at full capacity the market clearing price is smaller than the marginal cost of

production. The same logic translate to the banking sector with two differences: first,

banks care about the average residual cashflow not about the price; second, because

banks can pay dividends, the cost of capacity is not completely sunk in the second

stage. In particular, in every subgame H(k1, k2) such that mini
ki
γ
≥ Λγ (1− δ), the

game is a standard Bertrand competition in which the average residual cashflows

equals the opportunity cost of capital in equilibrium. Optimal strategies (G∗1, G
∗
2) are

r1 = r2 = ργ (1− δ) with probability 1 and banks’ equilibrium payoffs are equal to

Mi(G
∗
i , G

∗
j) = (1− δ)ki. In other words, when the subgame is a standards Bertrand,

banks walk away with the value their outside option, i.e. pay all capital back as

dividends. For the rest of the section consider only subgames in which mini
ki
γ
<

Λγ (1− δ).

Now, I will prove a set of lemmas that characterize some properties of a candidate

subgame equilibrium.

Lemma 2. In every subgame equilibrium it must be that ri ≥ r
(
k1+k2
γ

)
≡ rFC for

all i ∈ {1, 2}.

Proof. Given any Gj, if a bank names a rate r ≤ rFC , then it is operating at full
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capacity with probability one. Given that m(r) is an increasing function of r, any

r < rFC is strictly dominated by rFC . In other words, when a bank reaches maximum

capacity, has no incentive to undercut the opponent as it would decrease the interest

rate without improving the quantity. Therefore any rate r < rFCcannot be part of

an equilibrium strategy and ri ≥ rFC .

Denote by αi(r) ≡ Pr(ri = r) the probability mass that the distribution Gi puts on

r.

Lemma 3. In equilibrium, if r̄1 = r̄2 = r̄ and αi(r̄) > 0 for i ∈ {1, 2}, then

ri = r̄i = rFC and
ki
γ
≤ b̂

(
kj
γ

)
∀i ∈ {1, 2}

Proof. See Appendix.

Lemma 3 states that if there exists an equilibrium in which banks have the same

supremum, this supremum must be smaller or equal to the full capacity rate. The

intuition is the following: if, instead, r̄ > rFC , then at least one bank has capacity to

expand lending. Hence, naming r̄−ε, with ε arbitrarily small, is a profitable deviation

as it keeps the expected average residual cashflow constant and leads to a positive

jump in quantity. The second part of the lemma, ki
γ
≤ b̂

(
kj
γ

)
, ensures that each bank

has no incentive to charge a rate that is higher than r̄ and be the monopolist of the

residual demand.

Lemma 4. In equilibrium, if r̄i > r̄j or r̄i = r̄j and αj(r̄j) = 0, then:

(a) r̄i = r
(
b̂
(
kj
γ

)
+

kj
γ

)
and the equilibrium payoff of bank i is equal to

Mi(G
∗
i , G

∗
j) = (m(r̄i)− γ(1− δ)) b̂

(
kj
γ

)
︸ ︷︷ ︸

=P (kj)

+(1− δ)ki
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(b) ki
γ
> b̂

(
kj
γ

)
(c) ri = rj and αi(ri) = 0 for all i ∈ {1, 2}

(d) ki ≥ kj

(e) the equilibrium payoff of bank j is uniquely determined by (k1,k2) and

P (kj)
kj
ki

+ (1− δ)kj ≤Mj(G
∗
j , G

∗
i ) ≤ P (kj) + (1− δ)ki

Proof. See Appendix

This lemma states the following: the bank that is competing less aggressively (r̄i > r̄j)

must be the bank that has more capacity. The intuition is the following. To make the

low-capacity bank indifferent across rates in the support of its equilibrium strategy,

it must have a relatively lower probability of being undercut.

Under conditions 1 and 2, Dasgupta and Maskin (1986) guarantee the existence of

an equilibrium, therefore every H(k1, k2) has an equilibrium that must respect the

characteristics defined in Lemmas 2-4. We can divide the subgames space into three

relevant regions (see Figure 1 for reference) .

• Region 1
{
H(k1, k2) : mini

ki
γ
> Λγ(1− δ)

}
: in this region banks are so much

capitalized that capacity constraints do not matter. The subgame equilibrium

is r1 = r2 = ργ(1 − δ) with probability one and the equilibrium payoffs are

Mi(G
∗
i , G

∗
j) = (1− δ)ki for i ∈ {1, 2}.

• Region 2
{
H(k1, k2) : ki

γ
≤ b̂

(
kj
γ

)
∀i ∈ {1, 2}

}
: in this region banks operate at

full capacity. The subgame equilibrium is r1 = r2 = rFC with probability one

and the equilibrium payoffs are Mi(G
∗
i , G

∗
j) = m(rFC)ki

γ
for i ∈ {1, 2}.

• Region 3A
{
H(k1, k2) : k1 ≥ k2 and k1

γ
> b̂

(
k2
γ

)}
: in this region there is a mixed

strategy equilibrium which has the characteristics described by Lemma 4. The
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Figure 1: Equilibrium regions of the baseline model. The axes represent the banks’ capacities,

with each point corresponding to a specific subgame. The lines b̂(·) are the best response functions

of the auxiliary Cournot game, and Λγ(1 − δ)is the threshold such that, if both banks’ capacities

lie above it, capacity constraints become irrelevant. In Region 1 the equilibrium is Bertrand with

marginal cost (1 − δ). Region 2 is the full capacity equilibrium region. Region 3A and 3B are the

mixed strategy equilibrium regions.

equilibrium payoffs are M1(G∗1, G
∗
2) = P (k2)+(1−δ)k1 and P (k2)k2

k1
+(1−δ)k2 ≤

M2(G∗2, G
∗
1) ≤ P (k2) + (1− δ)k1

• Region 3B: symmetric to Region 3A

Note that stage 2 payoffs are continuous functions of k1 and k2.

3.2 First stage: capital choice

Recall, from Stage 1 perspective, bank i maximizes its overall profits:

max
µi(ki)∈Sk

{
π(µi, µj) =

∫ k̄i

ki

∫ k̄j

kj

(M∗
i (ki, kj)− ki) dµj(kj)dµi(ki)

}

where M∗
i (ki, kj) is the expected equilibrium payoff of H(k1, k2).
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Proposition 1. Under conditions 1 and 2, and κ→∞, the unique subgame perfect

equilibrium of the two-stage game is equivalent to the Cournot outcome. Hence, on

the equilibrium path k∗1 = k∗2 = γlC and r∗1 = r∗2 = rC with probability 1.

Proof. See Appendix.

To outline the argument, let me consider just pure strategies.

• Region 1: bank i profits are given by πi(ki, kj) = (1 − δ)ki − ki = −δki. In

this region the bank has raised too much capital. As paying dividends is costly,

from a stage 1 perspective, the bank is better off by raising less capital. Hence

any (k1, k2) that belong to region 1 cannot be a SPNE.

• Region 2: bank i profits are given by

πi(ki, kj) = m(rFC)
ki
γ
− ki =

(
Z

(
ki + kj
γ

)
− γ
)
ki
γ

. In this region banks operate at full capacity and charge the full capacity rate,

hence the stage 1 strategic choice of capacity is equivalent to the strategic choice

of quantity. The only possible subgame perfect equilibrium in this region the

Cournot equilibrium (k∗1, k
∗
2) = (γlC , γlC)6.

• Region 3A: bank 1 profits are equal to π1(k1, k2) = P (k2)−δk1. Bank 1’s profits

are decreasing in k1, hence bank 1 is better off by raising less capital. Note that

this is true also at the border of the region when k1 = k2. The intuition is that

in this region bank 1 has raised too much capital and has to pay dividends in

expectation. A positive cost for paying dividends rules out the possibility of

having an equilibrium in this region and ensures the uniqueness of the SPNE.

6Note that the Cournot equilibrium belongs to this region because b̂(l) ≤ b(l) for all l.
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Figure 2: Full game equilibrium. The axes represent the banks’ capacities, with each point corre-

sponding to a specific subgame. The black lines b(·) are the best response functions of the equivalent

one-stage Cournot game. The pink dot is the Cournot equilibrium. The grey lines are the best re-

sponse functions of the auxiliary Cournot game.

• Region 3B: symmetric to 3A.

Therefore the only subgame perfect equilibrium is (k∗1, k
∗
2) = (γlC , γlC), in stage 2

r1 = r2 = rFC = r(2lC) with probability one.

4 Modeling the banking sector: When can we as-

sume Cournot competition?

In the previous sections I delineated the condition under which the Bertrand-Cournot

equivalence holds and therefore the assumption of Cournot competition can be mi-

crofounded through the two-stage game. The key conditions are that (i) the average

expected residual cashflow must be increasing in own interest rate ceteris paribus ; (ii)

a bank’s own default rate must not depend on the interest rate charged by the op-

ponent. Clearly, Cournot competition can be safely assumed when risk is exogenous
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(
∂F
∂r

= 0
)

(e.g. Villa, 2023; Corbae and D’Erasmo, 2021; Bahaj and Malherbe, 2020).

In this section I show that moral hazard can be embedded in this model, whereas

adverse selection setups are often not consistent with the proposed microfoundations.

4.1 Moral Hazard

Consider a modified version of Boyd and De Nicolò (2005). Due to limited liability,

when entrepreneurs face a higher loan rate, they choose a riskier project or exert

less effort, hence the probability of default is increasing in loan rate. Entrepreneurs

choose among projects that require one unit of investment and have the following

return function:

X =


1 + α(p) with prob. (1− p)

0 with prob. p

Therefore entrepreneurs optimally pick a project by choosing the probability of default

p. Assume α(p) to be continuous, increasing and strictly concave. Each entrepreneur

t has her outside option ūt and solves the following problem

u(r) = max
p∈[0,1]

(1− p)(α(p)− r)

such that u(r) ≥ ūt

In order to have an interior solution I further assume that α(0) − α′(0) < r < α(1).

The first order condition is given by:

r − α(p∗) + (1− p∗)α′(p∗) = 0

21



By the implicit function theorem

dp∗

dr
=

1

2α′(p∗)− (1− p∗)α′′(p∗)
> 0

When charged a higher rate, entrepreneurs choose projects with higher probability of

default. For simplicity assume that all loans are perfectly correlated. The expected

average residual cashflow is given by:

m(r) = (1− p∗(r))(r + γ))

The monotonicity condition demands m(r) increasing, i.e.

m′(r) = −dp
∗

dr
(r + γ) + (1− p∗(r)) > 0

⇔ dp∗

dr
<

1− p∗(r)
r + γ

This inequality implies that the probability of default must not be too sensitive to a

marginal increase in the loan rate. For instance, if p(r) = a+ br, then:

m′(r) = −b(r + γ) + 1− a− br > 0

⇔ b <
1− a
2r + γ

≤ 1− a
γ

In general, by making parametric restrictions, Cournot competition can be justified in

frameworks that entail moral hazard (Martinez-Miera and Repullo, 2010; Schliephake,

2016; Gasparini, 2023; Corbae and Levine, 2025).
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4.2 Heterogeneous borrowers, adverse or favorable selection

and screening

Ex-ante heterogeneity of borrowers’ types requires a thorough discussion of the ra-

tioning rule. Recall the assumption on efficient rationing: when demand exceeds

capacity, borrowers that have a higher reservation rate are served first. Therefore, it

is essential to ensure that willingness to pay is not perfectly correlated with the bor-

rower’s type. Otherwise the rationing rule would contradict the fact that borrowers’

type is private information. Take a simplified version of De Meza and Webb (1987).

A borrower of type t has a project that requires a unitary investment and returns

(1 + a) with probability pt and 0 otherwise. Also assume that all borrowers have the

same outside option ū, constant. For a given loan rate r, a borrower of type t accepts

the loan if

pt(a− r) ≥ ū

⇒ r ≤ a− ū

pt

The reservation rate perfectly predict the type, which is supposed to be unobservable

by the bank. Hence the efficient rationing rule is incompatible with this setting.

Now assume that the outside option is stochastic and depends on the type ūt. For

simplicity, also assume that there are two types t ∈ {H,L}, Pr(t = H) = λ and

pH > pL. Type t is willing to accept the loan rate r if

r ≤ a− ūt
pt
≡ ξt
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Let ξt ∼ G(ξ|t) and assume that G(ξ|t) has a monotone hazard rate, i.e.

g(ξ|t)
1−G(ξ|t)

is monotonic in t

where g(ξ|t) = G′(ξ|t) is the probability density function. If it is monotonically de-

creasing, H-types are on average more willing to pay and adverse selection is modeled

à la De Meza and Webb (1987), if it is increasing, L-types are more willing to pay

as in Stiglitz and Weiss (1981). In these cases, the willingness to pay does not fully

reveal the type but induces a distribution over the types. Therefore there is no in-

consistency between the rationing rule and borrowers’ private information. However,

independently on how we model adverse selection, whenever the correlation between

type and the reservation rate is different from zero, the independence condition is

violated. Take the case of DeMeza and Webb: a bank has always the incentive to be

the cheapest one as it selects a better pool of borrowers in expectations.

To ensure the independence condition, we must design the distribution of outside

options in a very specific way. For example, assume that ūt = ptū, where ū ∼ G and

it is independent of the type, in this case a borrower of type t accepts the loan if

r ≤ a− ptū

pt
= a− ū.

Thanks to this assumption, the reservation rate is independent of borrower type.

However, it also implies that the rate charged by the bank does not affect the compo-

sition of the borrower pool, effectively eliminating any adverse or favorable selection

mechanism. Moreover, if we add a screening technology, the independence condition

is violated again. In particular, if banks receive uncorrelated signals, there is always

an incentive to undercut the opponent. The reason is that the most expensive bank
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draws from a worse distribution as it includes borrowers that have been rejected by the

cheaper bank7. One way to avoid the breakdown of the equilibrium is to assume that

banks see the same signal (e.g. open banking). Therefore, to include heterogeneous

borrowers in the model, one must make strong assumptions: borrower’s willingness to

pay must be independent of its type and any signal about the borrowers’ type must

be public (or perfectly correlated across banks).

5 Capital adjustment costs

In this section I first relax the assumption about the short-term capital premium

κ = +∞ and set out the condition under which the Cournot equilibrium is still the

unique SPNE of the two-stage game. Second, I discuss the assumptions on dividends

payment and provide an alternative setup to allow δ = 0.

5.1 Raising more capital

Consider the same game of the baseline model, but allow κ <∞. In this game, when

the capital requirement is binding and borrowers are rationed, banks can decide to

raise more capital and serve the demand it is facing.

Condition 3. (High premium) ργ(1 + κ) > max
{
r(b̂(0)), rC

}
.

Where r(b̂(0)) represents the monopolist rate in the auxiliary Cournot setting. The

condition ργ(1+κ) > r(b̂(0)) is a technical condition which ensures the existence of an

equilibrium in every subgame following Dasgupta and Maskin (1986). The condition

ργ(1 + κ) > rC ensures that, on the equilibrium path, banks have no incentive to

expand capacity and undercut the opponent. In the IO literature, Boccard and

7For a formal proof see Broecker, 1990; Marquez, 2002
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Wauthy (2000; 2004) extend KS by allowing firms to build extra capacity in the

competition stage at a premium cost and impose an equivalent condition.

Lemma 5. In subgames H(k1, k2) such that k1+k2
γ

< Λγ(1 + κ), the unique subgame

equilibrium is r1 = r2 = ργ(1 + κ) with probability one.

Proof. See Appendix for a formal proof. The intuition is that k1+k2
γ

< Λγ(1 + κ)

implies rFC ≥ ργ(1+κ), hence at the full capacity rate banks find it optimal undercut

the opponent and expand their capacity. The typical demand-stealing mechanism of

Bertrand competition is restored. Therefore, banks undercut each other until they

make zero profits, i.e. r1 = r2 = ργ(1 + κ).

Lemma 6. In subgames H(k1, k2) such that k1+k2
γ
≥ Λγ(1 + κ), lemmas 2 to 4 hold.

Proof. See Appendix.

The intuition is that when k1+k2
γ
≥ Λγ(1+κ), which implies rFC ≤ ργ(1+κ), the pos-

sibility to raise more capital does not create any profitable deviation in the subgames

equilibria found in the baseline game. The condition ργ(1 + κ) > r(b̂(0)) is necessary

to show that Lemma 4 is robust to short-term capital expansions. Specifically, it en-

sures that the equilibrium payoffs are solely determined by (k1, k2) and are the same

of the baseline game.

Now we can divide the subgames into four relevant regions. Regions 1 and 3A/B

are the same of the baseline game with the same payoffs. Region 2 has the same

equilibrium strategies and payoffs of the baseline but it is now delineated by

{
H(k1, k2) :

k1 + k2

γ
≥ Λγ(1 + κ) and

ki
γ
≤ b̂

(
kj
γ

)
∀i = 1, 2

}
.

Finally in Region 4, defined as
{
H(k1, k2) : k1+k2

γ
< Λγ(1 + κ)

}
, the equilibrium strate-

gies are r∗1 = r∗2 = ργ(1 + κ) and e∗i = γ Λγ(1+κ)

2
− ki; the equilibrium payoffs (1 + κ)ki
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Figure 3: Equilibrium regions with capital increase in the second stage. The axes represent the

banks’ capacities, with each point corresponding to a specific subgame. The curves b̂(·) are the best

response functions of the auxiliary Cournot game. In Region 1, 2, 3A-B have the same characteristics

of the Baseline game. In Region 4 the equilibrium is Bertrand with marginal cost (1 + κ). This

region is delimited by Λγ(1 + κ): if the sum of capacities is below this threshold, the sub-game falls

into Region 4.

Figure 4: Full game equilibrium with capital increase in the second stage. The axes represent

the banks’ capacities, with each point corresponding to a specific subgame. The black lines b(·) are

the best response functions of the equivalent one-stage Cournot game. The pink dot is the Cournot

equilibrium. The grey lines are the best response functions of the auxiliary Cournot game.
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for i = 1, 2. Also in this case, payoffs are continuous in (k1, k2).

Proposition 2. Under conditions 1-3, the unique subgame perfect equilibrium of the

two-stage game is equivalent to the Cournot outcome. Hence, on the equilibrium path

k∗1 = k∗2 = γlC and r∗1 = r∗2 = rC with probability 1.

Proof. For a formal proof see Appendix. Below I provide a sketch of the proof.

The only additional step with respect to the baseline model is to prove that there

cannot be any SPNE in Region 4. In in this region, πi(ki, kj) = κki, hence both

banks have the incentive to increase capital. The intuition is that banks anticipate

that they are going to expand capacity in the second stage. As raising capital in the

short term is more costly, hence they are better-off by raising more capital in stage

1.

5.2 Paying dividends

In the baseline model I assume that the cost of paying dividends δ must be positive. A

positive cost is necessary to rule out multiple equilibria. Alternatively, it is possible to

assume that in the first stage bank capital requires a premium rK > 0 and banks can

pay dividends at no cost. In this way is costly for the bank to raise excessive capital

in stage 1. I also assume that the cost of paying dividends must be small enough so

that the bank never wants to have capital in excess of the requirement. If δ is too

high or banks just cannot pay out dividends (δ → ∞) the game needs simplifying

assumptions in order to become tractable. The reason is that the amount of bank

capital not only determines the lending capacity of the bank, but also the marginal

cost of issuing loans. If li ≤ ki, the marginal cost of issuing loans is zero as the bank

does not need to raise deposits. If li > ki, the bank needs to raise deposits to finance
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its loans. Because of the deposit guarantee, the marginal cost depends on leverage:

the more leveraged is a bank, the cheaper the deposits8. Whereas when banks can

pay out dividends, banks’ leverage will just depend on the capital requirement and

the marginal cost of issuing loans is constant and independent of the initial capital

raised. Schliephake and Kirstein (2013) show that the Cournot outcome is SPNE in

a tractable model in which banks are not allowed to pay dividends, issue risk-free

differentiated loans, and loan demand is linear.

6 Conclusion

Cournot competition in the banking sector can be microfounded through a two-stage

game in which banks first choose capital and then compete à la Bertrand, subject

to capital requirements. Three key conditions must be satisfied: (i) the average

marginal residual cashflow must be increasing in the loan rate; (ii) in the two-stage

game, the distribution of default rates must depend only on the bank’s own rate and

not on its competitor’s; and (iii) the short-term premium must be sufficiently high.

When these conditions hold, banks behave as if they were competing in quantities,

leading to a Cournot outcome in equilibrium. Cournot provides tractability and

modeling flexibility. This paper establishes the key conditions under which Cournot

competition can be microfounded in the banking sector. At the same time, these

conditions delineate its limitations, thereby clarifying the scope of its applicability.

8Recall: from the bank’s perspective, the cost of deposits is the risk-free rate times the probability
of survival of the bank
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Appendix

Proposition 1: when b(lj) it is positive it must satisfy the following first order condi-

tion:

Z ′(b(lj) + lj)b(lj) + Z(b(lj) + lj)− γ = 0

Given the equation above, the best response function has the following properties:

34



[a] b(lj) is strictly decreasing : by the implicit function theorem

db(lj)

dlj
= − Z ′(b(lj) + lj) + Z ′′(b(lj) + lj)b(lj)

2Z ′(b(lj) + lj) + Z ′′(b(lj) + lj)b(lj)
< 0

[b] b′(lj) > −1: increase lj by ε and decrease b(lj) by the same amount. The FOC

is equal to:

Z ′(b(lj) + lj)(b(lj)− ε) + Z(b(lj) + lj)− γ

= Z ′(b(lj) + lj)b(lj) + Z(b(lj) + lj)− γ︸ ︷︷ ︸
=0

−Z ′(b(lj) + lj)ε

= −Z ′(b(lj) + lj)ε > 0

Hence it must be that b′(lj) < −1.

[c] If lj > b(lj), then b(b(lj)) < lj: set lj = b(lj) and b(lj) = lj and evaluate the

FOC:

Z ′(b(lj) + lj)lj + Z(b(lj) + lj)− γ

= Z ′(b(lj) + lj)(lj + b(lj)− b(lj)) + Z(b(lj) + lj)− γ

= Z ′(b(lj) + lj)(lj − b(lj)) < 0

as lj > b(lj) by hypothesis. This implies that the best response to b(lj) is smaller

than lj, i.e. b(b(lj)) < lj.

The last property ensures that b(lj) is a contraction and therefore has a unique fixed

point.

Capital requirement binding in Stage 2. Given any triple (ki, li, ri) if ki >

γli, bank i prefers to pay dividends and raise more deposits to make the capital
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requirement binding

∫ x̃

0

((1− x) (1 + ri)− (1− γ)) dF (x|ri)li + (1− δ)(ki − γli) ≥∫ x̌

0

(
(1− x) (1 + ri) li − (li − ki)+

)
dF (x|ri)

where x̌ = (1+ri)li−(li−ki)+
(1+ri)li

and (y)+ = max{0, y}. It is always possible to have a

positive but arbitrarily close to zero δ that make the inequality above true. Re-

arranging:

(1− δ)(ki − γli) ≥ (1 + ri)li

∫ x̌

x̃

F (x|ri)dx

The RHS is strictly smaller than (1 + ri)li(x̌ − x̃) = (ki − γli), hence there exists a

δ̄ > 0, such that

(1− δ̄)(ki − γli) = (1 + ri)li

∫ x̌

x̃

F (x|ri)dx

Hence for any δ < δ̄ the inequality holds.

Lemma 3: WLOG let k1 ≥ k2. By hypothesis r̄1 = r̄2 = r̄. Now suppose r̄ > rFC .

Bank 1 would have a profitable deviation to name a rate that is lower but arbitrarily

close to r̄

lim
ε↓0

M1(r̄ − ε, Gj)−M1(r̄, Gj) =

α2(r̄)(m(r̄)− γ(1− δ))
[
min

(
k1

γ
, L(r̄)

)
−max

(
L(r̄)

2
, L(r̄)− kj

γ

)]
> 0

Hence it must be that r̄ ≤ rFC . Now I prove the second part of the lemma. By lemma

1, it must be that ri = r̄i = rFC for all i. Then if bank i names a rate r > rFC , its
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payoff must be equal to

(m(r)− γ(1− δ))
(
L(r)− kj

γ

)
+ (1− δ)ki

Let li = L(r)− kj
γ

, then it is equivalent to maximize
(
Z
(
li +

kj
γ

)
− γ(1− δ)

)
li. By

definition it is maximized at li = b̂
(
kj
γ

)
, hence it must be that ki

γ
≤ b̂

(
kj
γ

)
, otherwise

bank i would have a profitable deviation.

Lemma 4: WLOG assume r̄1 > r̄2. Before proceeding I must prove that k2 ≥ γΛγ(1−

δ) is incompatible with the hypotheses of the lemma. By hypothesis, mini
ki
γ
< Λγ(1−

δ), hence if k2 > Λγ(1− δ), then k1 < Λγ(1− δ). By naming r ∈
(
ργ(1− δ), r

(
k1
γ

))
bank 2 gets a payoff that is strictly higher than (1 − δ)k2. Hence in equilibrium it

must be that r̄2 > ργ(1− δ). However if r̄1 > r̄2, it implies that when bank 1 names

r̄1, the residual demand is always equal to zero and M1(r̄1, G2) = (1− δ)k1. However

this cannot be part of an equilibrium as bank 1 has the profitable deviation to name

any rate r ∈ (ργ(1− δ), r̄2).

For (a) and (b): consider the function

φ(r) = (m(r)− γ(1− δ)) max

(
0, L(r)− kj

γ

)

By naming any rate r ≥ r̄1, bank 1 gets M1(r,G2) = φ(r) + (1− δ)k1, hence it must

be that φ(r) is maximized at r̄1. In order to maximize φ(r), bank 1 should choose

r such that k2
γ
≤ L(r) ≤ k1+k2

γ
. For any level of r there is a loan quantity, namely

l(r) = L(r) − k2
γ

, such that φ(r) =
(
Z
(
l(r) + k2

γ

)
− γ(1− δ)

)
l(r). Picking r to

maximize φ(r) is equivalent to maximize:

max
l∈[0, k1γ ]

(
Z

(
l +

k2

γ

)
− γ(1− δ)

)
l
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This is maximized at min
(
k1
γ
, b̂
(
k2
γ

))
, if the capital requirement binds we are in the

case of Lemma 3, which is incompatible with the hypothesis of this lemma, hence it

must be that k1
γ
> b̂

(
k2
γ

)
and r̄1 = r

(
b̂
(
k2
γ

)
+ k2

γ

)
.

(c) Suppose that ri < rj. By naming ri bank i gets Mi(ri, Gj) = (m(ri) − γ(1 −

δ)) min
(
ki
γ
, L(ri)

)
+ (1 − δ)ki. Clearly if L(ri) > ki

γ
, then the payoff is strictly

increasing in rand bank i would have the profitable deviation to name ri + ε; if

L(ri) <
ki
γ

, it must be that ri = r(b̂(0)) otherwise bank i would have a profitable

deviation. However ri ≤ r̄1 = r
(
b̂
(
k2
γ

)
+ k2

γ

)
< r(b̂(0)), therefore it cannot be an

equilibrium. It must be that r1 = r2 = r. Note that r > rFC , otherwise for bank 1

would be profitable to deviate and name r
(
b̂
(
k2
γ

)
+ k2

γ

)
. Now I prove that αi(r) = 0

for all i ∈ {1, 2}. Let i denote the bank that has (weakly) more capital9 and bank

j the bank that has (weakly) less capital. Suppose bank j names r with positive

probability. Then bank i prefers to name a rate that is smaller but arbitrarily close

to r

lim
ε↓0

Mi(r − ε, Gj)−Mi(r,Gj) =

αj(r)(m(r)− γ(1− δ))
(

min

(
ki
γ
, L(r)

)
−max

(
L(r)

2
, L(r)− kj

γ

))
︸ ︷︷ ︸

>0

Therefore it must be that αj(r) = 0. Bank j names r with zero probability, however

r is the infimum of the support, hence it must be that bank j names a rate that is

9I still have to prove that this is bank 1.
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arbitrarily close and above r but not exactly r

Mj(r,Gi)− lim
ε↓0

Mj(r + ε, Gi) =

αi(r)(m(r)− γ(1− δ))
(

min

(
kj
γ
,
L(r)

2

)
−max

(
0, L(r)− ki

γ

))
︸ ︷︷ ︸

>0

Hence it must be that αi(r) = 0.

(d) r ≤ r̄1 = r
(
b̂
(
k2
γ

)
+ k2

γ

)
, implies L(r) ≥ b̂

(
k2
γ

)
+ k2

γ
> k2

γ
. Hence the equilibrium

payoff of bank 2 must be equal to m(r)k2
γ

. Now suppose k2 > k1, it must be that the

equilibrium payoff of bank 1 is equal to m(r)k1
γ

. By part (a) we also know that the

equilibrium payoff of bank 1 is equal to P (k2) + (1− δ)k1, which implies that m(r) =

P (k2) γ
k1

+ γ(1 − δ). The payoff of bank 2 can be re-written as P (k2)k2
k1

+ (1 − δ)k2.

If bank 2 names r = r
(
b̂
(
k1
γ

)
+ k1

γ

)
> r̄1, it gets P (k1) + (1 − δ)k2. Therefore if

P (k1)+(1−δ)k2 > P (k2)k2
k1

+(1−δ)k2, which can be re-written as k1P (k1) > k2P (k2),

bank 2 has a profitable deviation and k2 > k1 contradicts the hypotheses of the

lemma. Define the function ψ(k) = kP (k) = k
(
Z
(
b̂
(
k
γ

)
+ k

γ

)
− γ(1− δ)

)
b̂
(
k
γ

)
and compute the derivative

ψ′(k) =

(
Z

(
b̂

(
k

γ

)
+
k

γ

)
− γ(1− δ)

)(
b̂

(
k

γ

)
− k

γ

)

Hence:

ψ(k2)− ψ(k1) =

∫ k2

k1

(
Z

(
b̂

(
k

γ

)
+
k

γ

)
− γ(1− δ)

)(
b̂

(
k

γ

)
− k

γ

)
dk

Bank 2 has a profitable deviation if the expression above is negative. As b̂(·) is

decreasing, this integral is more likely to be positive when k2 is as small as possible.
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From (b) we know that k2 > γb̂−1
(
k1
γ

)
, hence:

ψ(k2)− ψ(k1) < ψ

(
γb̂−1

(
k1

γ

))
− ψ(k1)

= k1

(
Z

(
b̂−1

(
k1

γ

)
+
k1

γ

)
− γ(1− δ)

)
b̂−1

(
k1

γ

)
−k1

(
Z

(
b̂

(
k1

γ

)
+
k1

γ

)
− γ(1− δ)

)
b̂

(
k1

γ

)
≤ 0

The term above is negative because by definition
(
Z
(
l + k1

γ

)
− γ(1− δ)

)
l is maxi-

mized at b̂
(
k1
γ

)
. Therefore it must be that k1 ≥ k2.

Finally (e): from part (a), (c) and (d) we know that

m(r)
k2

γ
≤ (m(r)− γ(1− δ)) min

(
k1

γ
, L(r)

)
+ (1− δ)k1 = P (k2) + (1− δ)k1

Hence in equilibrium bank 2 can get at most P (k2) + (1 − δ)k1. We also know that

P (k2) + (1 − δ)k1 = (m(r) − γ(1 − δ)) min
(
k1
γ
, L(r)

)
+ (1 − δ)k1 ≤ m(r)k1

γ
, which

implies m(r) ≥ P (k2) γ
k1

+ γ. Hence m(r)k2
γ
≥ P (k2)k2

k1
+ (1− δ)k2.

Proposition 1: WLOG let k̄1 ≥ k̄2.

(Step 1) In equilibrium it must be that k̄1/γ ≥ b(k2/γ). Suppose not: k̄1/γ < b(k2/γ),

which implies that b(k̄1/γ) > b(b(k2/γ)). As k2 ≤ k̄1, it must be that k2/γ < b(k2/γ).

Then it must be that b(b(k2/γ)) > k2/γ
10. By transitivity, k2/γ < b(k̄1/γ). Therefore

when bank 2 raises k2 is for sure in Region 2:

π(k2, µ1) =

∫ k̄1

k1

(
Z

(
k1 + k2

γ

)
− γ
)
k2

γ
dµ1(k1)

The profits are strictly increasing in k2 as k2 < b(k1/γ) for all k1 ∈ [k1, k̄1], hence bank

2 can profitably deviate and name k2 + ε. Therefore it must be that k̄1/γ ≥ b(k2/γ).

10See proof of Proposition 1 for the properties of b(·)
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(Step 2) k̄1/γ ≤ b(k̄2/γ). Suppose not: k̄1/γ > b(k̄2/γ). Then when bank 1 raises k̄1

is either in region 2 or in region 3A:

π(k̄1, µ2) =

∫ ξ(k̄1)

k2

(
Z

(
k̄1 + k2

γ

)
− γ
)
k̄1

γ
dµ2(k2) +

∫ k̄2

ξ(k̄1)

(P (k2)− δk1)dµ(k2)

where ξ(k) = 1
γ
b̂−1
(
k
γ

)
. The profits are strictly decreasing in k̄1, in particular the

first term is decreasing because k̄1/γ ≥ b(k2/γ) ≥ b(k2/γ) for all k2 in the support.

Therefore bank 1 would have the profitable deviation to raise k̄1 − ε. Hence it must

be that k̄1/γ ≤ b(k̄2/γ).

(Step 3) The previous step imply that k̄1/γ = b(k̄2/γ) = b(k2/γ), which implies

that bank 2’s equilibrium strategy is a pure strategy k2; bank 1 best response to

the pure strategy k2 is b
(
k2
γ

)
. In turn, bank 2 must best respond to that hence

k2
γ

= b
(
k1
γ

)
= b

(
b
(
k2
γ

))
. The unique solution is k1 = k2 = γlC , and in the second

stage banks name rFC = r(2lC) = rC with probability one.

Lemma 5: Recall that demand is rationed according to the efficient rule as in the

baseline game. In particular, when banks name the same rate, they can raise more

capital only if they cannot serve the entire demand collectively, i.e. r1 = r2 = r and

L(r) > k1+k2
γ

.

(Step 1) ri ≥ ργ(1 + κ) for all i ∈ {1, 2}. Suppose not and let ri < ργ(1 + κ) for some

i. By hypothesis ργ(1 + κ) < rFC , hence when bank i names riit gets:

Mi(ri, Gj) = m(ri)
ki
γ

Bank i is operating at full capacity and does not find it profitable to raise more capital

as ri < ργ(1 + κ). However m(·) is an increasing function, hence bank i would be

better off by naming ri + ε. Hence, this cannot be an equilibrium and it must be that
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ri ≥ ργ(1 + κ) for all i ∈ {1, 2}.

(Step 2) r̄i ≤ ργ(1 + κ) for all i ∈ {1, 2}. Suppose not and let r̄i > ργ(1 + κ). WLOG

divide the proof into two cases:

• r̄i > r̄j or r̄i = r̄j and αj(r̄j) = 0. By naming r̄i bank i gets Mi(r̄i, Gj) =

(1− δ)ki. As rj ≥ ργ(1 + κ), bank j will always find it profitable to raise more

capital and supply the entire market, therefore bank i has no residual demand

to serve. Bank i is better off by naming ργ(1 + κ) and getting (1 + κ)ki.

• r̄i = r̄j = r̄ and αi(r̄) > 0 for all i = 1, 2. If ργ(1 + κ) < r̄ < rFC :

Mi(r̄, Gj) = αj(r̄)

[
m(r̄)

L(r̄)

2
+ η

(
L(r̄)

2
, ki

)]
+ (1− αj(r̄))(1− δ)ki

If bank i instead names r̄ − ε:

lim
ε↓0

Mi(r̄ − ε) = αj(r̄) [m(r̄)L(r̄) + η(L(r̄), ki)] + (1− αj(r̄))(1− δ)ki

Hence:

lim
ε↓0

Mi(r̄ − ε)−Mi(r̄, Gj) =

αj(r̄)

[
m(r̄)

L(r̄)

2
+ η(L(r̄), ki)− η

(
L(r̄)

2
, ki

)]
> 0

Finally if r̄ ≥ rFC both banks have incentives to undercut as in every standard

Bertrand game.

Therefore it must be that r̄i ≤ ργ(1 + κ) for all i ∈ {1, 2}.

(Step 3) ργ(1 + κ) ≤ ri ≤ r̄i ≤ ργ(1 + κ), then that ri = ργ(1 + κ) with probability 1

for all i ∈ {1, 2} is the only possible equilibrium (existence is guaranteed by Dasgupta
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and Maskin (1986), however is immediate to show that given the opponent’s strategy

there are no profitable deviations).

Lemma 6: Start with Lemma 2. The proof is the same of the baseline model as we are

working under the hypothesis that k1+k2
γ
≥ Λγ(1 +κ), which implies rFC ≤ ργ(1 +κ).

Lemma 3 follows exactly.

the possibility of expanding does not alter the first part of the proof. Hence, if

r̄1 = r̄2 = r̄ and αi(r̄) > 0 for all i ∈ {1, 2} it must be that r̄ = r = rFC . Banks

do not have incentives to undercut the opponent, so we must check that there are no

incentives to charge a higher rate. Given the opponent strategy αj(r
FC) = 1, bank i

maximises its payoff:

max
r
Gj(ργ(1 + κ))

(
(m(r)− γ(1− δ)) min

(
ki
γ
, L(r)− kj

γ

))
+ (1− δ)ki

the payoff is multiplied by Gj(ργ(1 + κ)) because if the opponent charges a rate

higher than ργ(1 + κ) it will serve the entire market. However αj(r
FC) = 1 and

k1+k2
γ
≥ Λγ(1 + κ), imply Gj(ργ(1 + κ)) = 1. The rest of the proof follows.

Finally. Lemma 4. WLOG of generality let r̄1 > r̄2. Before proceeding I must

prove that k2 ≥ γΛ(γ(1− δ)) is incompatible with the hypotheses of the lemma. By

hypothesis, mini
ki
γ
< Λγ(1 − δ), hence if k2 > Λγ(1 − δ), then k1 < Λγ(1 − δ). By

naming r ∈
(
ργ(1− δ),min

(
r
(
k1
γ

)
, ργ(1 + κ)

))
bank 2 gets a payoff that is strictly

higher than (1− δ)k2. Hence in equilibrium it must be that r̄2 > ργ(1− δ). However

if r̄1 > r̄2, it implies that when bank 1 names r̄1, the residual demand is always equal

to zero and M1(r̄1, G2) = (1− δ)k1. However this cannot be part of an equilibrium as

bank 1 has the profitable deviation to name any rate r ∈ (ργ(1− δ), r̄2). By naming

any rate r ≥ r̄1, bank 1 gets M1(r,G2) = G2(ργ(1 +κ))φ(r) + (1− δ)k1, hence it must

be that φ(r) is maximized at r̄1. The optimization problem is equivalent to the one of
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the baseline model, hence r̄1 = r
(
b̂
(
k2
γ

)
+ k2

γ

)
. By Condition 3, r(b̂(0)) < ργ(1 +κ),

hence r
(
b̂
(
k2
γ

)
+ k2

γ

)
< ργ(1 + κ) and r̄2 ≤ r̄1 < ργ(1 + κ). This implies that

G2(ργ(1 + κ)) = 1 and the rest of the proof follows.

Proposition 2. WLOG let k̄1 ≥ k̄2. The proof follows the steps of Proposition 1, but

we need to add a preliminary step.

(Step 1) k1/γ ≥ Λγ(1 + κ) − k̄2/γ for all i ∈ {1, 2}. Suppose not and k1/γ <

Λγ(1 + κ) − k̄2/γ. When bank i raises k1, it is for sure in Region 4 and gets profits

equal to

π1(k1, µj) = (1 + κ)k1 − k1 = κk1

this is clearly increasing in k1, hence bank i would have the profitable deviation to

name k1 + ε. This inequality implies that k̄1/γ ≥ k1/γ ≥ Λγ(1 + κ)− k2/γ.

(Step 2) In equilibrium it must be that k̄1/γ ≥ b(k2/γ). Suppose not: k̄1/γ < b(k2/γ),

which implies k2/γ < b(k̄1/γ). Therefore when bank 2 raises k2 is either in Region 4

or in Region 2:

π(k2, µ1) =

∫ β(k2,κ)

k1

κk2dµ1(k1) +

∫ k̄1

β(k2,κ)

(
Z

(
k1 + k2

γ

)
− γ
)
k2

γ
dµ1(k1)

where β(k2, κ) = γΛγ(1 + κ) − k2. Profits are strictly increasing in k2 for all k1 ∈

[k1, k̄1], hence bank 2 can profitably deviate and name k2 + ε. Therefore, putting

together step 0 and step 1 it must be that k̄1/γ ≥ max{b(k2/γ),Λγ(1 + κ)− k2/γ}.

(Step 3) k̄1/γ ≤ b(k̄2/γ). Suppose not: k̄1/γ > b(k̄2/γ) and k̄1/γ ≥ Λγ(1 + κ)− k2/γ.

Then when bank 1 raises k̄1 is either in region 2 or in region 3A:

π(k̄1, µ2) =

∫ ξ(k̄1)

k2

(
Z

(
k̄1 + k2

γ

)
− γ
)
k̄1

γ
dµ2(k2) +

∫ k̄2

ξ(k̄1)

(P (k2)− δk1)dµ(k2)

where ξ(k) = 1
γ
b̂−1
(
k
γ

)
. The profits are strictly decreasing in k̄1, in particular the
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first term is decreasing because k̄1/γ ≥ b(k2/γ) ≥ b(k2/γ) for all k2 in the support.

Therefore bank 1 would have the profitable deviation to raise k̄1 − ε.

(Step 4) Putting together the previous steps it must be that k̄1/γ ≤ b(k̄2/γ) and

k̄1 ≥ max{b(k2/γ),Λγ(1 + κ) − k2/γ}, which implies that bank 2 is playing a pure

strategy k2. Bank 1, must best respond to the pure strategy k2, hence Bank 1 will

solve:

max
k1≥0

π1(k1, k2)

where

π1(k1, k2) =


κk1 if k1

γ
≤ Λγ(1 + κ)− k2

γ(
Z
(
k1+k2
γ

)
− γ
)
k1
γ

if Λγ(1 + κ) < k1
γ
≤ b̂

(
k2
γ

)
P (k2)− δk1 if k1

γ
> b̂

(
k2
γ

)
Hence

k∗1
γ

= max
(
b
(
k∗2
γ

)
,Λγ(1 + κ)− k∗2

γ

)
. At the same time bank 2 will have to best

respond to that and similarly
k∗2
γ

= max
(
b
(
k∗1
γ

)
,Λγ(1 + κ)− k∗1

γ

)
. As rC < ργ(1+κ),

b
(
k∗i
γ

)
> Λγ(1 + κ)− k∗i

γ
, which imply

k∗i
γ

= b
(
b
(
k∗i
γ

))
= lC .
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